Endogenous Banks' Networks, Cascades and Systemic Risk

Marcel Bluhm¹² Ester Faia²³ Jan Pieter Krahnen²³

¹The Wang Yannan Institute for Studies in Economics, Xiamen University

²Center for Financial Studies, Goethe University Frankfurt

³Goethe University Frankfurt

Milan, 24 May 2013

During recent financial crisis numerous prudential policy measures to counter **systemic risk** have been proposed.

During recent financial crisis numerous prudential policy measures to counter **systemic risk** have been proposed.

In this paper we:

- develop a network model in which banks choose their optimal portfolio via maximizing profit subject to regulatory constraints;
- allow for an endogenously evolving financial system/interbank market structure;
- can use the model to investigate systemic risk.

During recent financial crisis numerous prudential policy measures to counter **systemic risk** have been proposed.

In this paper we:

- develop a network model in which banks choose their optimal portfolio via maximizing profit subject to regulatory constraints;
- allow for an endogenously evolving financial system/interbank market structure;
- can use the model to investigate systemic risk.

Question investigated:

What are the effects of regulatory taxation on the financial system structure and systemic risk?

1. Model

2. Regulatory Taxation and Systemic Risk

3. Conclusion and Outlook

1. Model

2. Regulatory Taxation and Systemic Risk

3. Conclusion and Outlook

• Model consists of *N* bank balance sheets:

Assets	Liabilities	
Cash	Deposits	
Bank lending	Bank borrowing	
Non-liquid assets (nla)	Equity	

• Model consists of *N* bank balance sheets:

Assets	Liabilities	
Cash	Deposits	
Bank lending	Bank borrowing	
Non-liquid assets (nla)	Equity	

Banks choose balance sheet via maximizing expected profit:

$$max \ E(\pi^{i}) = E(\pi^{lending^{i}}) + E(\pi^{nla^{i}}) - E(cost^{borrowing^{i}})$$

• Model consists of *N* bank balance sheets:

Assets	Liabilities	
Cash	Deposits	
Bank lending	Bank borrowing	
Non-liquid assets (nla)	Equity	

Banks choose balance sheet via maximizing expected profit:

max
$$E(\pi^{i}) = E(\pi^{lending^{i}}) + E(\pi^{nla^{i}}) - E(cost^{borrowing^{i}})$$

s.t.

- liquidity requirement;
- capital requirement.

• Model consists of *N* bank balance sheets:

Assets	Liabilities	
Cash	Deposits	
Bank lending	Bank borrowing	
Non-liquid assets (nla)	Equity	

• Banks choose balance sheet via maximizing expected profit:

max
$$E(\pi^{i}) = E(\pi^{lending^{i}}) + E(\pi^{nla^{i}}) - E(cost^{borrowing^{i}})$$

s.t.

- liquidity requirement;
- capital requirement.

 \Rightarrow How to generate and analyze financial system from microfounded decisions?

M. Bluhm, E. Faia, and J.P. Krahnen

Network Model of Heterogenous Banks: Financial System Realization, Shock Absorption, and Systemic Risk

Stage 1: Establish financial system matrix \rightarrow Determine optimal portfolio for each bank

Network Model of Heterogenous Banks: Financial System Realization, Shock Absorption, and Systemic Risk

Stage 1: Establish financial system matrix \rightarrow Determine optimal portfolio for each bank

Stage 2: Financial system exposed to shock \rightarrow Contagious **shock absorption**, banks re-optimize portfolio

Network Model of Heterogenous Banks: Financial System Realization, Shock Absorption, and Systemic Risk

Stage 1: Establish financial system matrix \rightarrow Determine optimal portfolio for each bank

Stage 2: Financial system exposed to shock \rightarrow Contagious **shock absorption**, banks re-optimize portfolio

Stage 3: Investigate financial system after shock is absorbed \rightarrow Compute systemic risk and banks' contribution

1. Model

2. Regulatory Taxation and Systemic Risk

3. Conclusion and Outlook

 Different prudential policy regimes affect financial system via regulatory requirements (constraints) and risk charges (objective function);

- Different prudential policy regimes affect financial system via regulatory requirements (constraints) and risk charges (objective function);
- Banks optimization affected by regulatory policy changes, resulting in an endogenous reaction of the equilibrium financial system to macroprudential policy;

- Different prudential policy regimes affect financial system via regulatory requirements (constraints) and risk charges (objective function);
- Banks optimization affected by regulatory policy changes, resulting in an endogenous reaction of the equilibrium financial system to macroprudential policy;
- Risk charges affect banks' expected profit:

max $E(\pi^{i}) = E(\pi^{lending^{i}}) + E(\pi^{nla^{i}} - F(\beta_{1})) - E(cost^{borrowing^{i}} + F(\beta_{2}))$ where β_{1} and β_{2} are risk charges on non-liquid asset investments and banks' interconnectedness, respectively.

- Different prudential policy regimes affect financial system via regulatory requirements (constraints) and risk charges (objective function);
- Banks optimization affected by regulatory policy changes, resulting in an endogenous reaction of the equilibrium financial system to macroprudential policy;
- Risk charges affect banks' expected profit:

max $E(\pi^{i}) = E(\pi^{lending^{i}}) + E(\pi^{nla^{i}} - F(\beta_{1})) - E(cost^{borrowing^{i}} + F(\beta_{2}))$ where β_{1} and β_{2} are risk charges on non-liquid asset investments and banks' interconnectedness, respectively.

 \Rightarrow What are the effects of regulatory taxation on financial system structure and stability?

• Effect of risk charge on **non-liquid assets**: System becomes **more heterogenous and interconnected**; Potential of firesales decreases;

- Effect of risk charge on **non-liquid assets**: System becomes **more heterogenous and interconnected**; Potential of firesales decreases;
- Effect of risk charge on **interconnectedness**: System becomes **less interconnected and heterogenous**;

- Effect of risk charge on **non-liquid assets**: System becomes **more heterogenous and interconnected**; Potential of firesales decreases;
- Effect of risk charge on **interconnectedness**: System becomes **less interconnected and heterogenous**;
- Both charges incentivize **banks to lower contribution** to systemic risk, causing overall systemic risk to go down.

1. Model

2. Regulatory Taxation and Systemic Risk

3. Conclusion and Outlook

- Microfounded network model allows for investigating systemic risk in endogenously evolving financial system;
- Risk charges incentivize banks to lower contribution to systemic risk and therefore lower overall systemic risk;
- Several model extensions under construction (central bank, different shocks, multiperiod, robustness etc.).

Cifuentes, R., G. Ferrucci, and H.S. Shin (2005): Liquidity Risk and Contagion, Journal of the European Economic Association, 3, 556-566.

Deutsche Bank (2012): Quarterly Report 1.2012.

Eisenberg, L. and T. H. Noe (2001): Liquidity Risk and Contagion, Management Science, 47, 236-249.

Financial Stability Board, International Monetary Fund, and Bank for International Settlements (2009): Guidance to Assess the Systemic Importance of Financial Institutions, Markets and Instruments: Initial considerations, *Report to the G-20 Finance Ministers and Central Bank Governors*.

	Bank 1	Bank 2		R.O.W.	
	Dank i	Dank 2		NLA	С
Bank 1					
Bank 2					
÷					
R.O.W.					

Banks optimize portfolios for given parameters¹ and interbank rates rⁱ = rⁱ (r^{rf}, r^{rp} (PDⁱ));

 \rightarrow Obtain aggregate demand and supply on interbank market;

Banks optimize portfolios for given parameters¹ and interbank rates $r^{i} = r^{i} \left(r^{rf}, r^{rp} \left(PD^{i} \right) \right);$

 \rightarrow Obtain aggregate demand and supply on interbank market;

Adjust r^{rf} in tâtonnement process to match demand and supply;
 → Obtain equilibrium rⁱ (for given PDs);

- Banks optimize portfolios for given parameters¹ and interbank rates $r^{i} = r^{i} \left(r^{rf}, r^{rp} \left(PD^{i} \right) \right);$
 - \rightarrow Obtain aggregate demand and supply on interbank market;
- Adjust r^{rf} in tâtonnement process to match demand and supply;
 → Obtain equilibrium rⁱ (for given PDs);
- For given market equilibrium, interbank fund allocation found via counterparty matching;

- Banks optimize portfolios for given parameters¹ and interbank rates $r^{i} = r^{i} \left(r^{rf}, r^{rp} \left(PD^{i} \right) \right);$
 - \rightarrow Obtain aggregate demand and supply on interbank market;
- Adjust r^{rf} in tâtonnement process to match demand and supply;
 → Obtain equilibrium rⁱ (for given PDs);
- For given market equilibrium, interbank fund allocation found via counterparty matching;

- Banks optimize portfolios for given parameters¹ and interbank rates $r^{i} = r^{i} \left(r^{rf}, r^{rp} \left(PD^{i} \right) \right);$
 - \rightarrow Obtain aggregate demand and supply on interbank market;
- Adjust r^{rf} in **tâtonnement process** to match demand and supply; \rightarrow Obtain equilibrium r^{i} (for given *PD*s);
- For given market equilibrium, interbank fund allocation found via counterparty matching;
- Expose banks to shock distribution and update PDs;
- Iterate over steps 1 to 4 until PDs converge.

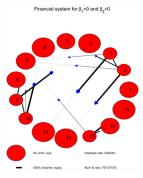
- Shock absorption similar to Cifuentes, Ferruci, and Shin (2005), using an iterative clearing algorithm based on Eisenberg and Noe (2001);
- Contagion (banks' negative externality) occurs via
 - \Rightarrow interbank market exposure, and
 - \Rightarrow firesales (marking-to-market mechanism).

Systemic risk is defined as

"a risk of disruption to financial services that is (i) caused by an impairment of all or parts of the financial system and (ii) has the potential to have serious negative consequences for the real economy." (FSB, IMF, and BIS; 2009)

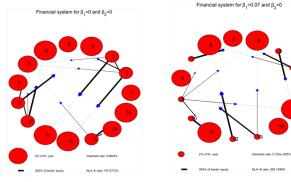
In our model **systemic risk** consecutive on a shock *j* is defined as $\Phi_j = \frac{\sum_{i_b} assets_{i_b}}{\sum_i assets_i}.$

Systemic risk is defined as


"a risk of disruption to financial services that is (i) caused by an impairment of all or parts of the financial system and (ii) has the potential to have serious negative consequences for the real economy." (FSB, IMF, and BIS; 2009)

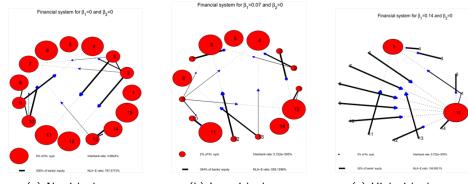
In our model **systemic risk** consecutive on a shock *j* is defined as $\Phi_j = \frac{\sum_{i_b} assets_{i_b}}{\sum_i assets_i}.$

To measure contribution to systemic risk we use an approximated **Shaply** value:


$$\hat{\phi}_i(\mathbf{v}) = \frac{1}{I} \sum_{K_I \ni i; K_I \subset I} \mathbf{v}(K) - \mathbf{v}(K - \{i\}).$$

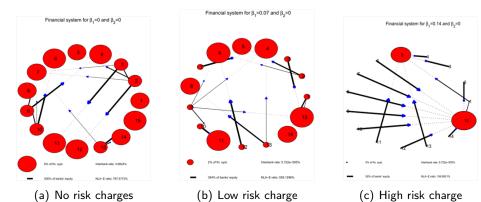
Risk Charge on Non-Liquid Asset Investments

(a) No risk charges


Risk Charge on Non-Liquid Asset Investments

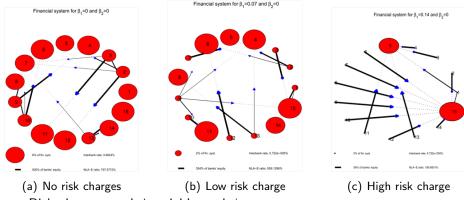
(a) No risk charges

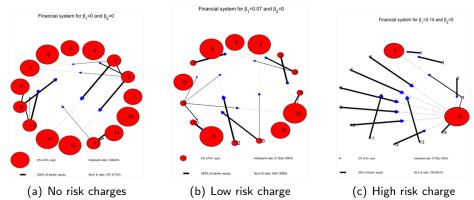
(b) Low risk charge


Risk Charge on Non-Liquid Asset Investments

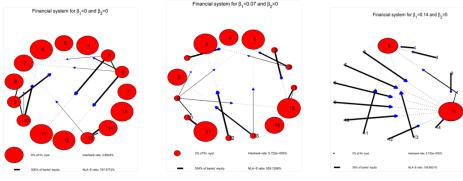
(a) No risk charges

(b) Low risk charge


(c) High risk charge

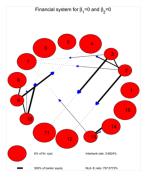

Endogenous Banks' Networks, Cascades and Systemic Risk

• Risk charge on nla↑

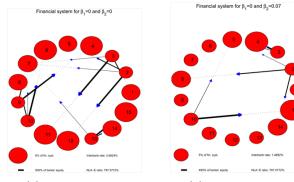

M. Bluhm, E. Faia, and J.P. Krahnen

• Risk charge on nla $\uparrow \Rightarrow$ yield on nla \downarrow

 Risk charge on nla↑⇒yield on nla↓ ⇒fraction of banks engageing in lending ↑;


(a) No risk charges

(b) Low risk charge (c) High risk charge

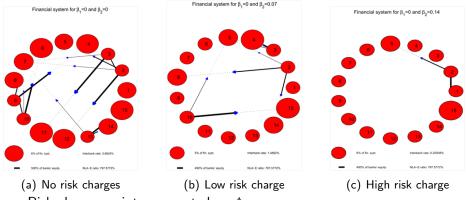

- Risk charge on nla↑⇒yield on nla↓ ⇒fraction of banks engageing in lending ↑;
- Results: interbank market rates ↓; financial system heterogeneity and interonnectedness ↑; overall investment in nla ↓.

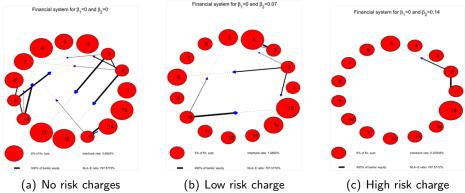
M. Bluhm, E. Faia, and J.P. Krahnen

Endogenous Banks' Networks, Cascades and Systemic Risk

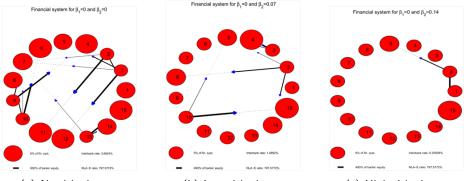
(a) No risk charges

(a) No risk charges


(b) Low risk charge


(a) No risk charges

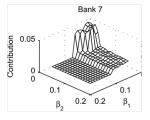
(b) Low risk charge


(c) High risk charge

• Risk charge on interconnectedness[↑]

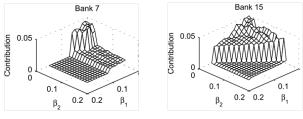
 Risk charge on interconnectedness↑⇒fraction of banks engageing in borrowing ↓;

(a) No risk charges


(b) Low risk charge

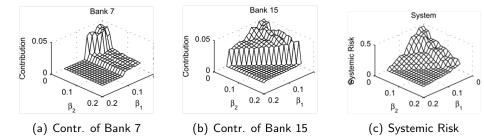
(c) High risk charge

- Risk charge on interconnectedness↑⇒fraction of banks engageing in borrowing ↓;
- Results: interbank market rates ↓; financial system heterogeneity and interonnectedness ↓.


M. Bluhm, E. Faia, and J.P. Krahnen

Prudential Policy Regimes: Systemic Risk Charge

(a) Contr. of Bank 7


Prudential Policy Regimes: Systemic Risk Charge

(a) Contr. of Bank 7

(b) Contr. of Bank 15

Prudential Policy Regimes: Systemic Risk Charge

Network Model of Heterogenous Banks: Portfolio Optimization

Assets	Liabilities
Cash (c ⁱ)	Deposits (d)
Bank lendings (<i>blⁱ</i>)	Bank borrowings (<i>bbⁱ</i>)
Non-liquid assets (<i>nlaⁱ</i>)	Equity (<i>eⁱ</i>)

$$max_{bl^{i},nla^{i},bb^{i},c^{i}}$$
 $E(\pi^{i}) = bl^{i} \cdot r^{rf} + \frac{r^{i,nla}}{p} \cdot nla^{i} - bb^{i} \cdot r^{rf} \cdot \frac{1}{1 - \xi PD^{i}}$

•
$$c^i \ge \alpha \cdot d;$$

• $er^i = \frac{c^i + p^{nla} \cdot nla^i + bl^i - d - bb^i}{\chi_1 \cdot p^{nla} \cdot nla^i + \chi_2 bl^i} \ge \gamma + \tau;$
• further (feasibility) constraints.

Network Model of Heterogenous Banks: Portfolio Optimization

Assets	Liabilities
Cash (c ⁱ)	Deposits (<i>d</i>)
Bank lendings (<i>blⁱ</i>)	Bank borrowings (<i>bbⁱ</i>)
Non-liquid assets (<i>nlaⁱ</i>)	Equity (<i>eⁱ</i>)

$$max_{bl^{i},nla^{i},bb^{i},c^{i}} E(\pi^{i}) = bl \cdot r^{rf} + \frac{(r^{i,nla} - \beta_{2})}{p} \cdot nla^{i} - bb^{i} \cdot \left(r^{rf} \cdot \frac{1}{1 - \xi PD^{i}} + \beta_{1}\right)$$

•
$$c^i \ge \alpha \cdot d;$$

• $er^i = \frac{c^i + p^{nla} \cdot nla^i + bl^i - d - bb^i}{\chi_1 \cdot p^{nla} \cdot nla^i + \chi_2 bl^i} \ge \gamma + \tau;$
• further (feasibility) constraints.

Parameter	Source	Value
Liquidity requirement	0.1	Required cash reserve in U.S.
Capital requirement	0.08	FED regulatory agency definition
Risk weight on nla	1	Basel II (commercial bank loans)
Risk weight on ibm	0.2	Interb. dep. betw. OECD countr.
Deposits	600	See DB Q1 2012
Equity	N(65, 10)	See DB Q1 2012
Yield on NLA	U(0, 0.15)	Free parameter
Shock	<i>MVN</i> (5, 25)	Free parameter