Dissecting Climate Risks: Are they Reflected in Stock Prices?

Renato Faccini¹, Rastin Matin¹, George Skiadopoulos^{2,3}

¹Danmarks Nationalbank

²School of Economics and Finance, Queen Mary University of London

³Department of Banking and Financial Management, University of Piraeus

CONSOB - Sapienza University of Rome Seminar series 1 April, 2022

Motivation

 Market-wide risks from climate change are multifaceted: Physical & Transition risks

Motivation

- Market-wide risks from climate change are multifaceted: Physical & Transition risks
- Do stock prices reflect these risks? The answer is not obvious
 - (-) Survey studies (Krüger et al., 2020)
 - (-) Decarbonizing portfolios $\Rightarrow \uparrow$ transaction costs (Bessembinder, 2017)
 - (?) Does decarbonisation pay off? (Pedersen et al. 2020)
 - (+) Investors may be sensitive to short-term effects

Motivation

 Market-wide risks from climate change are multifaceted: Physical & Transition risks

Do stock prices reflect these risks? The answer is not obvious

- (-) Survey studies (Krüger et al., 2020)
- (-) Decarbonizing portfolios $\Rightarrow \uparrow$ transaction costs (Bessembinder, 2017)
- (?) Does decarbonisation pay off? (Pedersen et al. 2020)
- (+) Investors may be sensitive to short-term effects

• Is it physical or transition risks which are priced?

- Camp #1: Physical risks are not priced ⇒ Need for government's intervention
- **Camp#2:** Physical risks *are not* priced & Government's intervention *is* priced, yet no need for intervention.

• First time evidence on what types of market-wide climate risks are reflected in U.S. stock prices

- First time evidence on what types of market-wide climate risks are reflected in U.S. stock prices
- We dissect market-wide climate risks by textual analysis
 - Novel measures of market-wide physical & transition climate risks

- First time evidence on what types of market-wide climate risks are reflected in U.S. stock prices
- We dissect market-wide climate risks by textual analysis
 - Novel measures of market-wide physical & transition climate risks
- Provide and validate a possible explanation for the results

- First time evidence on what types of market-wide climate risks are reflected in U.S. stock prices
- We dissect market-wide climate risks by textual analysis
 - Novel measures of market-wide physical & transition climate risks
- Provide and validate a possible explanation for the results
- Document which firms are the most exposed to these risks.

Dataset

- Reuters news: 1st Jan. 2000 31st Dec.2018
 - More than 13 million articles from Refinitiv News Archive
 - Screening & looking for "climate change" or "global warming" \rightarrow \approx 34,000 articles

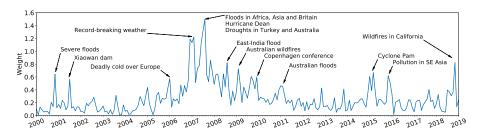
Dataset

- Reuters news: 1st Jan. 2000 31st Dec.2018
 - More than 13 million articles from Refinitiv News Archive
 - Screening & looking for "climate change" or "global warming" \rightarrow \approx 34,000 articles
- U.S. common stocks returns & characteristics (daily data, CRSP, Compustat)
- Equity risk factors from authors' websites
- 'E' score from Refinitiv.

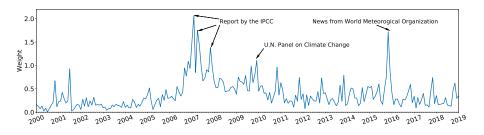
Latent Dirichlet Allocation (Blei et al. 2003)

- **①** Decomposes the entire textual corpus into K topics (k = 1, ..., K)
 - **Topic** k: A probability distribution over unique words
- Estimates topic shares: Percentage of a given article associated with the respective topic
 - Article: A probability distribution over topics
 - Intensity by which a topic appears in that article
- k-risk factor value at time t: Intensity of news coverage of a given topic on that day
- We identify four topics: Natural disasters, Global warming, International summits, U.S. climate policy.

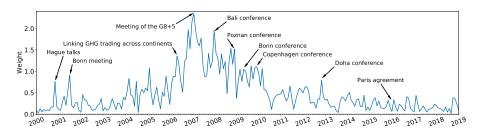
Labeling Topics: Natural disasters


Labeling Topics: U.S. climate policy I

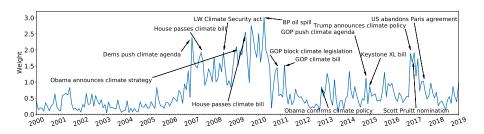
Labeling Topics: U.S. climate policy II



Natural disasters factor


- ullet Increases in the factor ightarrow Bad news for the economy
- Risks which will materialize in the long-term.

Global warming factor


- ullet Increases in the factor o Bad news for the economy
- Risks which will materialize in the long-term.

International summits factor

- ullet Increases in the factor o Bad news for the economy
- Risks which will materialize in the long-term.

U.S. climate policy factor

- Increases \rightarrow ?
 - Bad or good news for the economy depending on which Party conquers the Congress
- Risks will materialize in the short-term.

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma_i' X_t + \varepsilon_{it}$$
 (1)

• For each stock i, at each time t, we estimate the climate beta with respect to each textual factor F_t separately

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma_i' X_t + \varepsilon_{it}$$
 (1)

lacktriangle We sort stocks in (decile/quintile) portfolios based on eta_i

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma_i' X_t + \varepsilon_{it}$$
 (1)

- lacksquare We sort stocks in (decile/quintile) portfolios based on eta_i
- Calculate monthly post-ranking portfolio returns (value-weighted)

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma_i' X_t + \varepsilon_{it}$$
 (1)

- **①** We sort stocks in (decile/quintile) portfolios based on β_i
- Calculate monthly post-ranking portfolio returns (value-weighted)
- Compute spread portfolio returns

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma_i' X_t + \varepsilon_{it}$$
 (1)

- **①** We sort stocks in (decile/quintile) portfolios based on β_i
- Calculate monthly post-ranking portfolio returns (value-weighted)
- Compute spread portfolio returns
- Rolling window estimation: Repeat Steps (1 3) until we exhaust the sample

$$r_{it} - r_{ft} = c_i + \beta_i F_t + \gamma_i' X_t + \varepsilon_{it}$$
 (1)

- **①** We sort stocks in (decile/quintile) portfolios based on β_i
- Calculate monthly post-ranking portfolio returns (value-weighted)
- Compute spread portfolio returns
- Rolling window estimation: Repeat Steps (1 3) until we exhaust the sample
- Estimate alpha of spread portfolio
 - Alternative models for estimating climate beta & alpha.

Are factors priced? Jan 2000 - Dec 2018 (Deciles)

Alphas (Decile portfolios), 1st January 2000- 31st December 2018

Natural Disasters	Global Warming	Int. Summits	U.S. Climate		
Panel A: Market model					
0.14	-0.0	0.12	0.96***		
(0.3)	(-0.2)	(0.42)	(2.91)		
Panel B: FF 3F model					
0.07	0.20	0.53*	0.65**		
(0.24)	(0.67)	(1.73)	(2.34)		
Panel C: FFC model					
-0.07	0.03	-0.49	0.46*		
(-0.24)	(0.10)	(1.65)	(1.66)		
Panel D: FF 5F model					
0.03	0.05	-0.66**	0.2***		
(0.0)	(0.19)	(-2.5)	(2.75)		
Panel E: FF 5F + momentum					
0.27	-0.09	-0.76***	0.61**		
(0.9)	(-0.34)	(-2.63)	(2.25)		

• Possible explanation: Intertemporal hedging

- Possible explanation: Intertemporal hedging
- Conjecture: ↓ U.S. climate policy signals ↑ transition risks
 - ullet "bad" news for the economy
 - ullet deteriorates the investor's opportunity set
- Investors would buy (short sell) stocks with negative (positive) textual climate betas

- Possible explanation: Intertemporal hedging
- Conjecture: ↓ U.S. climate policy signals ↑ transition risks
 - ullet "bad" news for the economy
 - ullet deteriorates the investor's opportunity set
- Investors would buy (short sell) stocks with negative (positive) textual climate betas
- Strategies to check proposed explanation: Check the risk-premium's sign by ensuring that the conjecture holds

- Possible explanation: Intertemporal hedging
- Conjecture: ↓ U.S. climate policy signals ↑ transition risks
 - ullet "bad" news for the economy
 - ullet deteriorates the investor's opportunity set
- Investors would buy (short sell) stocks with negative (positive) textual climate betas
- Strategies to check proposed explanation: Check the risk-premium's sign by ensuring that the conjecture holds
 - Choose an appropriate sample period (Sub-sample analysis)
 - Re-construct the policy factor by marking the content of news (narrative analysis, Romer & Romer, 2010)
 - ⇒ Know what the factor fluctuations signal.

Subsample analysis

- Post Nov 2012:
 - Lack of a majority for Democrats in the U.S. House of Representatives
 - After 2014, the Democrats also lost control of the Senate
 - Trump took over in Nov. 2016

Decile sorts	on U.S. Clima	te Quintile sort	s on U.S. Climate	
Pre-2012	Post-2012	Pre-2012	Post-2012	
Panel A: Market model				
1.05**	0.4**	0.55	0.75***	
(2.33)	(2.12)	(1.55)	(2.9)	
		Panel B: FF 3F model		
0.35	0.9***	0.06	0.70***	
(0.91)	(3.06)	(0.17)	(3.11)	
		Panel C: FFC model		
0.17	0.97***	-0.11	0.46**	
(0.46)	(3.29)	(-0.43)	(2.52)	
		Panel D: FF 5F model		
0.4	1.23***	0.45*	0.59**	
(1.23)	(3.2)	(1.73)	(2.15)	
		Panel E: FF 5F + mom.		
0.44	0.79***	0.21	0.42**	
(1.26)	(2.72)	(1.12)	(2.13)	

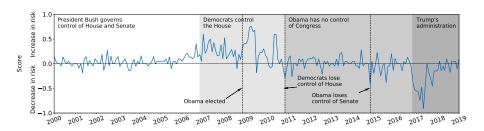
Climate policy portfolio characteristics

•	1 (L)	2	3	4	5 (H)
•	Pa	anel A: Fama-Fr	ench-Carhart mode	el	•
Average return	0.80*	1.03***	0.87***	0.89**	1.07***
	(1.84)	(2.88)	(2.84)	(2.60)	(2.66)
Climate beta	-0.48	-0.16	0.00	0.15	0.47
E score	<mark>35.12</mark>	40.37	41 .66	40.29	<mark>34.86</mark>
E score (change)	<mark>7.12</mark>	6.26	5.70	6.22	<mark>6.05</mark>
log(size)	6.36	6.91	7.02	6.91	6.43
N	747.00	751.00	751.00	750.00	747.00
•	Par	nel B: Fama-Frei	nch five-factor mod	lel	
Average return	0.71	1.01***	0.86***	0.95***	1.10***
	(1.40)	(2.76)	(2.79)	(3.09)	(2.93)
Climate beta	-0.48	-0.16	0.00	0.16	0.48
E score	35.15	40.51	41.37	40.37	35.15
E score (change)	<mark>6.64</mark>	6.22	5.64	6.38	<mark>6.18</mark>
log(size)	6.38	6.92	7.01	6.91	6.43
N	747.00	748.00	752.00	752.00	747.00

U.S. climate policy: Construction of a narrative factor

• Select articles with a topic share on the domestic policy factor > 40% \rightarrow 3, 500 articles

U.S. climate policy: Construction of a narrative factor


- Select articles with a topic share on the domestic policy factor > 40% \rightarrow 3, 500 articles
- Read each article and mark it with
 - ullet +1, if it signals an increase in transition risks,
 - ullet -1, if it signals a decrease in transition risks,
 - 0, if its content is mixed

U.S. climate policy: Construction of a narrative factor

- Select articles with a topic share on the domestic policy factor > 40% \rightarrow 3, 500 articles
- Read each article and mark it with
 - ullet +1, if it signals an increase in transition risks,
 - ullet -1, if it signals a decrease in transition risks,
 - 0, if its content is mixed
- Narrative factor value at time t: Sum of the marks given to the articles over day t.

U.S. climate policy narrative factor

Sign of the risk premium under hedging hypothesis

- By construction, decreases in the factor signal good news for the economy
- ⇒ Risk premium of the U.S. climate policy narrative factor: It should be negative under the hedging argument.

Asset pricing tests: Narrative factor (Decile)

2000-2018	2000-2012	2012-2018			
Panel A: Market model					
-0.64*	-0.52	-1.01**			
(-1.86)	(-1.13)	(-2.43)			
•	Panel B: FF 3F model	•			
-1.03***	0.77**	-1.39***			
(-3.56)	(-2.37)	(-4.30)			
•	Panel C: FFC model				
-0.85***	-0.59*	-1.37***			
(-2.76)	(-1.66)	(-3.61)			
	Panel D: FF 5F model				
-0.65**	-0.62	-0.84***			
(-1.97)	(-1.43)	(-2.97)			
Panel E: FF 5F + momentum					
-0.31	0.00	-0.93***			
(-1.07)	(0.00)	(-3.40)			

- We dissect market-wide climate risk in its multiple sources
- Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging

- We dissect market-wide climate risk in its multiple sources
- Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging

Results:

- We identify four market-wide textual factors with a clear interpretation
- Only U.S. climate policy is priced
- This evidence is driven by the post-2012 era

- We dissect market-wide climate risk in its multiple sources
- Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging

Results:

- We identify four market-wide textual factors with a clear interpretation
- Only U.S. climate policy is priced
- This evidence is driven by the post-2012 era

Implications:

1 It is the government's intervention and not physical risks

- We dissect market-wide climate risk in its multiple sources
- Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging

Results:

- We identify four market-wide textual factors with a clear interpretation
- Only U.S. climate policy is priced
- This evidence is driven by the post-2012 era

- 1 It is the government's intervention and not physical risks
- Climate policy risks have started to be priced only recently

- We dissect market-wide climate risk in its multiple sources
- Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging

Results:

- We identify four market-wide textual factors with a clear interpretation
- Only U.S. climate policy is priced
- This evidence is driven by the post-2012 era

- 1 It is the government's intervention and not physical risks
- Climate policy risks have started to be priced only recently
- Investors reward firms which improve their environmental profile

- We dissect market-wide climate risk in its multiple sources
- Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging

Results:

- We identify four market-wide textual factors with a clear interpretation
- Only U.S. climate policy is priced
- This evidence is driven by the post-2012 era

- 1 It is the government's intervention and not physical risks
- Climate policy risks have started to be priced only recently
- Investors reward firms which improve their environmental profile
- Results are consistent with both camps

- We dissect market-wide climate risk in its multiple sources
- Examine whether these are priced in U.S. stocks
- Provide & validate an explanation: Intertemporal hedging

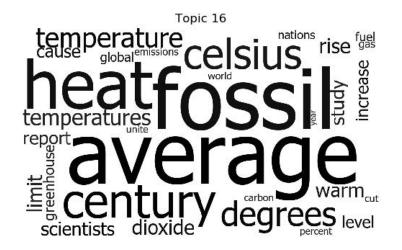
Results:

- We identify four market-wide textual factors with a clear interpretation
- Only U.S. climate policy is priced
- This evidence is driven by the post-2012 era

- 1 It is the government's intervention and not physical risks
- Climate policy risks have started to be priced only recently
- Investors reward firms which improve their environmental profile
- Results are consistent with both camps
- Future research: Why are not all risks priced? Investors' short-termism and/or lack of information, or not systemic.

Thank you for your attention and time!

 $https://papers.ssrn.com/sol3/papers.cfm?abstract_id = 3795964$


 $gskiado@unipi.gr,\ g.skiadopoulos@qmul.ac.uk$

- Climate Finance empirical literature (Giglio et al., 2021a)
 - Real estate: Bernstein et al. (2019), Baldauf et al. (2020), Giglio et al. (2021b)
 - Bonds: Painter (2020), Seltzer et al. (2020), Goldsmith-Pinkham et al. (2021), Duan et al. (2021)
 - Options: Ilhan et al. (2021), Cao et al. (2021)
 - Stocks: Oesteich and Tsiakas (2015), Bansal et al. (2017), Hong et al. (2019), Görgen et al. (2019), Bolton & Kacperczyk (2021a, b), Hsu et al. (2021), Pastor et al. (2021)

- **Olimate Finance empirical literature** (Giglio et al., 2021a)
 - Real estate: Bernstein et al. (2019), Baldauf et al. (2020), Giglio et al. (2021b)
 - Bonds: Painter (2020), Seltzer et al. (2020), Goldsmith-Pinkham et al. (2021), Duan et al. (2021)
 - Options: Ilhan et al. (2021), Cao et al. (2021)
 - Stocks: Oesteich and Tsiakas (2015), Bansal et al. (2017), Hong et al. (2019), Görgen et al. (2019), Bolton & Kacperczyk (2021a, b), Hsu et al. (2021), Pastor et al. (2021)
- **2 Textual analysis in finance** (Gentzkow et al., 2019)
 - Market-wide climate factors: Engle et al. (2020), Huynh and Xia (2020), Alekseev et al. (2021)
 - Firm-specific climate factors: Kölbel et al. (2020), Li et al. (2020) and Sautner et al. (2020, 2021)

- Climate Finance empirical literature (Giglio et al., 2021a)
 - Real estate: Bernstein et al. (2019), Baldauf et al. (2020), Giglio et al. (2021b)
 - Bonds: Painter (2020), Seltzer et al. (2020), Goldsmith-Pinkham et al. (2021), Duan et al. (2021)
 - Options: Ilhan et al. (2021), Cao et al. (2021)
 - Stocks: Oesteich and Tsiakas (2015), Bansal et al. (2017), Hong et al. (2019), Görgen et al. (2019), Bolton & Kacperczyk (2021a, b), Hsu et al. (2021), Pastor et al. (2021)
- **Textual analysis in finance** (Gentzkow et al., 2019)
 - Market-wide climate factors: Engle et al. (2020), Huynh and Xia (2020), Alekseev et al. (2021)
 - Firm-specific climate factors: Kölbel et al. (2020), Li et al. (2020) and Sautner et al. (2020, 2021)
- Onstruction of accurate ESG ratings (Berg et al., 2020).

Labeling Topics: Global warming

Labeling Topics: International summits

Topics: Correlations

	U.S. Climate policy	Int'l summits	Global warming	Natural disasters	mktrf	hml	smb	rmw	cma	umd
U.S. Climate policy	1.00	0.30	0.27	0.18	-0.02	-0.02	0.01	0.02	-0.02	-0.00
Int'l summits	0.30	1.00	0.31	0.24	-0.01	0.01	0.00	0.02	-0.01	-0.00
Global warming	0.27	0.31	1.00	0.34	-0.01	-0.01	-0.01	0.02	-0.01	0.01
Natural disasters	0.18	0.24	0.34	1.00	-0.02	-0.03	-0.02	0.02	-0.01	0.04
mktrf	-0.02	-0.01	-0.01	-0.02	1.00	0.06	0.12	-0.44	-0.28	-0.30
hml	0.02	0.01	-0.01	-0.03	0.06	1.00	-0.18	0.06	0.45	-0.33
smb	0.01	0.00	-0.01	-0.02	0.12	-0.18	1.00	-0.35	-0.05	0.13
rmw	0.02	0.02	0.02	0.02	-0.44	0.06	-0.35	1.00	0.26	0.17
cma	-0.02	-0.01	-0.01	-0.01	-0.28	0.45	-0.05	0.26	1.00	0.11
umd	-0.00	-0.00	0.01	0.04	-0.30	-0.33	0.13	0.17	0.11	1.00

- lacktriangledown Low correlations \Rightarrow LDA has successfully dissected climate risks
- Why the low correlations? Long-term vs. Short-term effects.

Asset pricing tests: Narrative factor (Quintile)

2000-2018	2000-2012	2012-2018
	Panel A: Market model	
-0.23	-0.01	-0.71
(-0.77)	(-0.02)	(-1.52)
	Panel B: FF 3F model	
-0.58***	-0.20	-1.05***
(-2.64)	(-0.78)	(-3.67)
	Panel C: FFC model	
-0.48**	-0.24	-0.93***
(-2.30)	(-1.05)	(-2.86)
	Panel D: FF 5F model	
-0.39*	-0.16	-0.69**
(-1.89)	(-0.62)	(-2.53)
	Panel E: FF 5F + momentum	
-0.26	-0.05	-0.60**
(-1.20)	(-0.19)	(-2.08)

Do climate policy factors conflate EPU / Political risks?

- Conditional bivariate sorts (Bali et al., 2017)
- Control variables: EPU (Baker et al., 2016), Political risk (Hassan et al., 2019)

First control variable:	EPU	PRisk
Pa	nel A: Market model	
Textual	0.6**	0.71**
	(2.09)	(2.44)
Narrative	-0.65	-0.17
	(-1.55)	(-0.38)
P	anel B: FF 3F model	
Textual	0.63**	0.7***
	(2.54)	(2.84)
Narrative	-0.96***	-0.84***
	(-3.78)	(-2.75)
	Panel C: FFC model	
Textual	0.43***	0.42**
	(3.06)	(2.2)
Varrative	-0.89***	-0.65**
	(-2.68)	(-2.14)
P	anel D: FF 5F model	
Textual	0.56**	0.46*
	(2.31)	(1.76)
Narrative	-0.53**	-0.46**
	(-2.45)	(-2.17)
Pane	l E: FF 5F + momentun	1
Textual	0.43**	0.54***
	(2.58)	(3.06)
Narrative	-0.69***	-0.57**